28 research outputs found

    Bascules à impulsion robustes en technologie 28nm FDSOI pour circuits numériques basse consommation à très large gamme de tension d'alimentation

    Get PDF
    The explosion market of the mobile application and the paradigm of the Internet of Things lead to a huge demand for energy-efficient systems. To overcome the limit of Moore's law due to bulk technology, a new transistor technology has appeared recently in industrial process: the fully-depleted silicon on insulator, or FDSOI.In modern ASIC designs, a large portion of the total power consumption is due to the leaves of the clock tree: the flip-flops. Therefore, the appropriate flip-flop architecture is a major choice to reach the speed and energy constraints of mobile and ultra-low power applications. After a thorough overview of the literature, the explicit pulse-triggered flip-flop topology is pointed out as a very interesting flip-flop architecture for high-speed and low-power systems. However, it is today only used in high-performances circuits mainly because of its poor robustness at ultra-low voltage.In this work, explicit pulse-triggered flip-flops architecture design is developed and studied in order to improve their robustness and their energy-efficiency. A large comparison of resettable and scannable latch architecture is performed in the energy-delay domain by modifying the sizing of the transistors, both at nominal and ultra-low voltage. Then, it is shown that the back biasing technique allowed by the FDSOI technology provides better energy and delay performances than the sizing methodology. As the pulse generator is the main cause of functional failure, we proposed a new architecture which provides both a good robustness at ultra-low voltage and an energy efficiency. A selected topology of explicit pulse-triggered flip-flop was implemented in a 16x32b register file which exhibits better speed, energy consumption and area performances than a version with master-slave flip-flops, mainly thanks to the sharing of the pulse generator over several latches.Avec l'explosion du marché des applications portables et le paradigme de l'Internet des objets, la demande pour les circuits à très haute efficacité énergétique ne cesse de croître. Afin de repousser les limites de la loi de Moore, une nouvelle technologie est apparue très récemment dans les procédés industriels afin de remplacer la technologie en substrat massif ; elle est nommée fully-depleted silicon on insulator ou FDSOI. Dans les circuits numériques synchrones modernes, une grande portion de la consommation totale du circuit provient de l'arbre d'horloge, et en particulier son extrémité : les bascules. Dès lors, l'architecture adéquate de bascules est un choix crucial pour atteindre les contraintes de vitesse et d'énergie des applications basse-consommation. Après un large aperçu de l'état de l'art, les bascules à impulsion explicite sont reconnues les plus prometteuses pour les systèmes demandant une haute performance et une basse consommation. Cependant, cette architecture est pour l'instant fortement utilisée dans les circuits à haute performance et pratiquement absente des circuits à basse tension d'alimentation, principalement à cause de sa faible robustesse face aux variations.Dans ce travail, la conception d'architecture de bascule à impulsion explicite est étudiée dans le but d'améliorer la robustesse et l'efficacité énergétique. Un large panel d'architectures de bascule, avec les fonctions reset et scan, a été comparé dans le domaine énergie-délais, à haute et basse tension d'alimentation, grâce à une méthodologie de dimensionnement des transistors. Il a été montré que la technique dite de « back bias », l'un des principaux avantages de la technologie FDSOI, permettait des meilleures performances en énergie et délais que la méthodologie de dimensionnement. Ensuite, comme le générateur d'impulsion est la principale raison de dysfonctionnement, nous avons proposé une nouvelle architecture qui permet un très bon compromis entre robustesse à faible tension et consommation énergétique. Une topologie de bascule à impulsion explicite a été choisie pour être implémentée dans un banc de registres et, comparé aux bascules maître-esclave, elle présente une plus grande vitesse, une plus faible consommation énergétique et une plus petite surface

    Bascules à impulsion robustes en technologie 28nm FDSOI pour circuits numériques basse consommation à très large gamme de tension d'alimentation

    No full text
    The explosion market of the mobile application and the paradigm of the Internet of Things lead to a huge demand for energy-efficient systems. To overcome the limit of Moore's law due to bulk technology, a new transistor technology has appeared recently in industrial process: the fully-depleted silicon on insulator, or FDSOI.In modern ASIC designs, a large portion of the total power consumption is due to the leaves of the clock tree: the flip-flops. Therefore, the appropriate flip-flop architecture is a major choice to reach the speed and energy constraints of mobile and ultra-low power applications. After a thorough overview of the literature, the explicit pulse-triggered flip-flop topology is pointed out as a very interesting flip-flop architecture for high-speed and low-power systems. However, it is today only used in high-performances circuits mainly because of its poor robustness at ultra-low voltage.In this work, explicit pulse-triggered flip-flops architecture design is developed and studied in order to improve their robustness and their energy-efficiency. A large comparison of resettable and scannable latch architecture is performed in the energy-delay domain by modifying the sizing of the transistors, both at nominal and ultra-low voltage. Then, it is shown that the back biasing technique allowed by the FDSOI technology provides better energy and delay performances than the sizing methodology. As the pulse generator is the main cause of functional failure, we proposed a new architecture which provides both a good robustness at ultra-low voltage and an energy efficiency. A selected topology of explicit pulse-triggered flip-flop was implemented in a 16x32b register file which exhibits better speed, energy consumption and area performances than a version with master-slave flip-flops, mainly thanks to the sharing of the pulse generator over several latches.Avec l'explosion du marché des applications portables et le paradigme de l'Internet des objets, la demande pour les circuits à très haute efficacité énergétique ne cesse de croître. Afin de repousser les limites de la loi de Moore, une nouvelle technologie est apparue très récemment dans les procédés industriels afin de remplacer la technologie en substrat massif ; elle est nommée fully-depleted silicon on insulator ou FDSOI. Dans les circuits numériques synchrones modernes, une grande portion de la consommation totale du circuit provient de l'arbre d'horloge, et en particulier son extrémité : les bascules. Dès lors, l'architecture adéquate de bascules est un choix crucial pour atteindre les contraintes de vitesse et d'énergie des applications basse-consommation. Après un large aperçu de l'état de l'art, les bascules à impulsion explicite sont reconnues les plus prometteuses pour les systèmes demandant une haute performance et une basse consommation. Cependant, cette architecture est pour l'instant fortement utilisée dans les circuits à haute performance et pratiquement absente des circuits à basse tension d'alimentation, principalement à cause de sa faible robustesse face aux variations.Dans ce travail, la conception d'architecture de bascule à impulsion explicite est étudiée dans le but d'améliorer la robustesse et l'efficacité énergétique. Un large panel d'architectures de bascule, avec les fonctions reset et scan, a été comparé dans le domaine énergie-délais, à haute et basse tension d'alimentation, grâce à une méthodologie de dimensionnement des transistors. Il a été montré que la technique dite de « back bias », l'un des principaux avantages de la technologie FDSOI, permettait des meilleures performances en énergie et délais que la méthodologie de dimensionnement. Ensuite, comme le générateur d'impulsion est la principale raison de dysfonctionnement, nous avons proposé une nouvelle architecture qui permet un très bon compromis entre robustesse à faible tension et consommation énergétique. Une topologie de bascule à impulsion explicite a été choisie pour être implémentée dans un banc de registres et, comparé aux bascules maître-esclave, elle présente une plus grande vitesse, une plus faible consommation énergétique et une plus petite surface

    Thrombin generation test: A reliable tool to evaluate the pharmacodynamics of vitamin K antagonist rodenticides in rats

    No full text
    International audienceVitamin K antagonist rodenticide pharmacodynamics (PD) is studied in rodents with traditional laboratory tests. We wondered if thrombin generation test (TGT) could add value. Difethialone (10mg/kg) was administered per os to 97 OFA-Sprague Dawley rats. PD was studied over a 72h-period using the Calibrated Automated Thrombogram on platelet poor plasma before and after intoxication (3 female and 3 male rats for each 13 time points) and TGT parameters were compared with the prothrombin time (PT) and vitamin K dependent factor activities previously reported. Following intoxication, preliminary tests evidenced rapid and full inhibition of thrombin generation triggered with 5 or 20pM human recombinant tissue factor. To study the evolution of TGT parameters following difethialone intake, we adapted the test by complementing intoxicated rat samples with pooled normal rat plasma (3/1, v/v). Adapted TGT confirmed the known higher procoagulant basal level in females compared to males through higher endogenous thrombin potential (ETP) and peak height (PH) (p<0.0001 and p=0.0003, respectively). An exponential model fitted well the PH and ETP decay after intoxication. In contrast to PT, the decreases were observed immediately following VKA intake and had comparable time to halving values: 10.5h (95% CI [8.2; 13.6]) for ETP and 10.4h (95% CI [7.8; 14.1]) for PH. The decrease of FVII and FX preceded that of PH, ETP and FII while FIX decreased later on, contributing to the severe hypo-coagulability. We demonstrated that TGT performed in samples of intoxicated rats complemented with normal plasma is a reliable tool for evaluation of VKA rodenticide PD in rats

    From Hydrated Ni<sub>3</sub>(OH)<sub>2</sub>(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> to Anhydrous Ni<sub>2</sub>(OH)<sub>2</sub>(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>): Impact of Structural Transformations on Magnetic Properties

    No full text
    Dehydration of the hybrid compound [Ni<sub>3</sub>(OH)<sub>2</sub>(tp)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] (<b>1</b>) upon heating led to the sequential removal of coordinated water molecules to give [Ni<sub>3</sub>(OH)<sub>2</sub>(tp)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>2</b>) at <i>T</i><sub>1</sub> = 433 K and thereafter anhydrous [Ni<sub>2</sub>(OH)<sub>2</sub>(tp)] (<b>3</b>) at <i>T</i><sub>2</sub> = 483 K. These two successive structural transformations were thoroughly characterized by powder X-ray diffraction assisted by density functional theory calculations. The crystal structures of the two new compounds <b>2</b> and <b>3</b> were determined. It was shown that at <i>T</i><sub>1</sub> (433 K) the infinite nickel oxide chains built of the repeating structural unit [Ni<sub>3</sub>(μ<sub>3</sub>-OH)<sub>2</sub>]<sup>4+</sup> in <b>1</b> collapse and lead to infinite porous layers, forming compound <b>2</b>. The second transformation at <i>T</i><sub>2</sub> (483 K) gave the expected anhydrous compound <b>3</b>, which is isostructural with Co<sub>2</sub>(OH)<sub>2</sub>(tp). These irreversible transitions directly affect the magnetic behavior of each phase. Hence, <b>1</b> was found to be antiferromagnetic at <i>T</i><sub>N</sub> = 4.11 K, with metamagnetic behavior with a threshold field <i>H</i><sub>c</sub> of ca. 0.6 T. Compound <b>2</b> exhibits canted antiferromagnetism below <i>T</i><sub>N</sub> = 3.19 K, and <b>3</b> is ferromagnetic below <i>T</i><sub>C</sub> = 4.5 K

    From Hydrated Ni<sub>3</sub>(OH)<sub>2</sub>(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> to Anhydrous Ni<sub>2</sub>(OH)<sub>2</sub>(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>): Impact of Structural Transformations on Magnetic Properties

    No full text
    Dehydration of the hybrid compound [Ni<sub>3</sub>(OH)<sub>2</sub>(tp)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] (<b>1</b>) upon heating led to the sequential removal of coordinated water molecules to give [Ni<sub>3</sub>(OH)<sub>2</sub>(tp)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>2</b>) at <i>T</i><sub>1</sub> = 433 K and thereafter anhydrous [Ni<sub>2</sub>(OH)<sub>2</sub>(tp)] (<b>3</b>) at <i>T</i><sub>2</sub> = 483 K. These two successive structural transformations were thoroughly characterized by powder X-ray diffraction assisted by density functional theory calculations. The crystal structures of the two new compounds <b>2</b> and <b>3</b> were determined. It was shown that at <i>T</i><sub>1</sub> (433 K) the infinite nickel oxide chains built of the repeating structural unit [Ni<sub>3</sub>(μ<sub>3</sub>-OH)<sub>2</sub>]<sup>4+</sup> in <b>1</b> collapse and lead to infinite porous layers, forming compound <b>2</b>. The second transformation at <i>T</i><sub>2</sub> (483 K) gave the expected anhydrous compound <b>3</b>, which is isostructural with Co<sub>2</sub>(OH)<sub>2</sub>(tp). These irreversible transitions directly affect the magnetic behavior of each phase. Hence, <b>1</b> was found to be antiferromagnetic at <i>T</i><sub>N</sub> = 4.11 K, with metamagnetic behavior with a threshold field <i>H</i><sub>c</sub> of ca. 0.6 T. Compound <b>2</b> exhibits canted antiferromagnetism below <i>T</i><sub>N</sub> = 3.19 K, and <b>3</b> is ferromagnetic below <i>T</i><sub>C</sub> = 4.5 K

    Synthesis of a Functionalizable Water-Soluble Cryptophane-111

    No full text
    The development of optimized xenon host systems is of crucial importance for the success of molecular imaging using hyperpolarized <sup>129</sup>Xe MRI. Cryptophane-111 is a promising candidate because of its encapsulation properties. The synthesis of cryptophane-111-based biosensors requires both water-solubilizing and chemically activatable groups. An expeditious synthesis of a water-soluble and functionalizable cryptophane-111 is described

    Enhancing Action of Positive Allosteric Modulators through the Design of Dimeric Compounds

    No full text
    The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs cocrystallized with the GluA2 ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (<b>16</b> and <b>22</b>) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2<sub>o</sub>(<i>Q</i>) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound <b>22</b> [6,6′-(ethane-1,2-diyl)­bis­(4-cyclopropyl-3,4-dihydro-2<i>H</i>-1,2,4-benzothiadiazine 1,1-dioxide], with an EC<sub>50</sub> value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound <b>16</b> (EC<sub>50</sub> = 13 nM) was successfully cocrystallized with the GluA2<sub>o</sub>-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface
    corecore